Online tuning of fuzzy PID controllers via rule weighing based on normalized acceleration

نویسندگان

  • Onur Karasakal
  • Müjde Güzelkaya
  • Ibrahim Eksin
  • Engin Yesil
  • Tufan Kumbasar
چکیده

In this study, an on-line tuning method is proposed for fuzzy PID controllers via rule weighing. The rule weighing mechanism is a fuzzy rule base with two inputs namely; ‘‘error’’ and ‘‘normalized acceleration’’. Here, the normalized acceleration provides relative information on the fastness or slowness of the system response. In deriving the fuzzy rules of the weighing mechanism, the transient phase of the unit step response of the closed loop system is to be analyzed. For this purpose, this response is assumed to be divided into certain regions, depending on the number of membership functions defined for the error input of the fuzzy logic controller. Then, the relative importance or influence of the fired fuzzy rules is determined for each region of the transient phase of the unit step response of the closed loop system. The output of the fuzzy rule weighing mechanism is charged as the tuning variable of the rule weights; and, in this manner, an on-line self-tuning rule weight assignment is accomplished. The effectiveness of the proposed on-line weight adjustment method is demonstrated on linear and non-linear systems by simulations. Moreover, a real time application of this new method is accomplished on a pH neutralization process. & 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of a New Self-Tuning Fuzzy PID Controller on PLC

In this study, the self-tuning method for fuzzy PID controllers that has been developed in a previous study of the authors is implemented on PLC in order to control some standard processes formed on FEEDBACK PCS 327 Process Control Simulator. In this tuning method, the input scaling factor corresponding to the derivative coefficient and the output scaling factor corresponding to the integral co...

متن کامل

Tuning Of Fuzzy PID Controllers

Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains compared to proportional-integral-derivative (PID) controllers. This research paper proposes a design procedure and a tuning procedure that carries tuning rules from the PID domain over to fuzzy single-loop controllers. The idea is to start with a tuned, conventional PID controller, replace it with an equiva...

متن کامل

Decentralized Fuzzy-PID Based Control Model for a Multivariable Liquid Level System

Multivariable liquid level control is essential in process industries to ensure quality of the product and safety of the equipment. However, the significant problems of the control system include excessive time consumption and percentage overshoot, which result from ineffective performance of the tuning methods of the PID controllers used for the system. In this paper, fuzzy logic was used to t...

متن کامل

A PSO-Tuning Method for Design of Fuzzy PID Controllers

A novel tuning method is proposed for the design of fuzzy PID controllers for multivariable systems. In the proposed method, a PID controller is expressed in terms of fuzzy rules, in which the input variables are the error signals and their derivatives, while the output variables are the PID gains. In this manner, the PID gains are adaptive and the fuzzy PID controller has more flexibility and ...

متن کامل

Analysis of direct action fuzzy PID controller structures

The majority of the research work on fuzzy PID controllers focuses on the conventional two-input PI or PD type controller proposed by Mamdani (1974). However, fuzzy PID controller design is still a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. This paper investigates different fuzzy PID controller structures, including the Mamdani-type cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2013